
LLNL-JRNL-410751

First-principles elastic properties
of (alpha)-Pu

P. Soderlind, J. Klepeis

February 20, 2009

Physical Review B



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



First-principles elastic properties of α-Pu
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Abstract

Density-functional electronic-structure calculations have been used to investigate the ambi-

ent pressure and low temperature elastic properties of the ground-state α phase of plutonium

metal. The electronic structure and correlation effects are modeled within a fully relativistic anti-

ferromagnetic treatment with a generalized gradient approximation for the electron exchange and

correlation functional. The 13 independent elastic constants, for the monoclinic α-Pu system, are

calculated for the observed geometry. A comparison of the results with measured data from recent

resonant ultrasound spectroscopy for a cast sample is made.

PACS numbers: 62.20.de, 71.15.Mb, 71.20.Eh, 71.27.+a, 75.10.Lp
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I. INTRODUCTION

Plutonium remains one of the more controversial metals because its complex physics and

chemistry are not well understood on a fundamental level. The electronic structure is re-

sponsible for many interesting properties of Pu. For instance an intriguing and unusual

phase diagram1 in which atomic arrangements of sharply contrasting symmetry and den-

sity compete closely with each other, see Fig. 1. Although it is generally accepted that

this scenario arises from chemical bonding that is flexible enough to accomplish this, the

controversy focuses on the description and understanding of the underlying electronic struc-

ture. On one hand, dynamical mean-field theory (DMFT)2 may provide a means to describe

the electron-correlation effects, while on the other, total energies obtained from density-

functional theory (DFT) appear consistent with many ground-state properties of plutonium

as well as the aforementioned phase diagram.3,4

The only possibility to distinguish these and other models is of course to compare with

results of experimental investigations. Fortunately, there have been several recent electronic

structure measurements for Pu5 and a new experiment has been proposed6 that may help in

this regard. Certainly, progress on the theoretical side, DFT, DMFT, or otherwise, provides

further motivation for ongoing experimental efforts on plutonium.

Here we are applying DFT to calculate the 13 independent elastic constants of the mono-

clinic (P21/m) ground-state α phase of Pu. The result of this investigation is important for

several reasons. First, the elastic moduli reflect a detailed picture of the chemical bonding

and are therefore relevant when discerning the quality of the electronic structure. Second,

single crystal elastic stiffness components for Pu have been measured7 for δ-Pu, for which

theoretical data also exist,8 but never for the α phase. The present results therefore serve

as predictions and could be used for comparison with other models or to constrain semi-

empirical descriptions9,10 of α-Pu.

In Sect. II we review technical details of the computational method including our theo-

retical model for α-Pu. This is followed by Sect. III in which we report calculated elastic

constants and relate these to data on cast α-Pu. We discuss some sensitivities of the elas-

tic properties with respect to the atomic volume, structural relaxations, inclusion of spin

polarization, spin-orbit coupling, and orbital polarization in Sect. IV. Finally, we provide

some concluding remarks in Sect. V and a detailed description of the strains applied to the
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lattice and the corresponding elastic constants in the Appendix, Sect. A.

II. COMPUTATIONAL DETAILS

The electronic structure and total energy for α-Pu are obtained from density-functional

calculations which require the crystal geometry and the atomic number (94 for Pu). The

monoclinic crystal structure has been determined by x-ray diffraction11 and is rather complex

with 16 atoms/cell. It is characterized by 8 atomic positions, two axial ratios, and an angle.

Theoretically it is in principle possible to allow all parameters of this structure to relax,

but the associated computational burden makes it prohibitive with the present technique.

However, our previous study of the α-Pu structure12 leads us to believe that relaxation

effects are rather small. We will discuss this further in Sect. IV.

For the experimental geometry11 very small strains (≤ 1%) are applied so that the elastic

constants can be extracted using relevant equations which are, for completeness, included in

the Appendix, Sect. A. About 4-8 magnitudes of strains are used for every elastic constant

and a fourth degree polynomial is fitted to the corresponding energies thus defining the

harmonic coefficient, relevant for the elastic constants (Eq. A2). In all cases, fitting to a

second order polynomial gives a result not different by more than about 10 %. The use of

higher orders of polynomials do not change the results significantly. No structural relaxation

is allowed during the strain because of computational limitations. This approximation,

however, was shown to be justified for the elastic-constant calculation of α-U13 and we believe

this is the case also for α-Pu. Nonetheless, it is plausible that allowing such relaxations could

lower the elastic energies a small amount.

Electron correlations are more pronounced in Pu than most other metals. Here, these

effects are modeled by the generalized gradient approximation14, spin polarization, and spin-

orbit coupling (SO). This approach is the same as has been used for Pu in the past3,12 with

the exception of the orbital polarization (OP) present in the previous scheme. Although

ideally preferred, inclusion of OP severely impacts the efficiency of the computations and

for the demanding task of calculating the elastic constants for α-Pu this complication is

neglected. The effect of OP is known to be substantial for δ-Pu15,16 but electron-correlation

effects are weaker in α-Pu. In Table I we contrast data obtained from calculations for α-Pu

with and without OP, together with recent measurements for cast α-Pu. We notice that OP
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expands the equilibrium volume, resulting in a very close agreement with room-temperature

data.17,18 The theoretical bulk moduli compare favorably with the measurement as well. All

elastic constants are computed using a fixed volume for the unstrained lattice (V0; Eq. A1)

and because the OP equilibrium volume is in better agreement with experiment we chose

this value (V0 =20.3 Å3).

For the present calculations we use a full-potential version of the linear muffin-tin orbital

method implemented by Wills and coworkers.19 The use of full non-sphericity of the charge

density and one-electron potential is essential for accurate total energies and in particular

when elastic constants are calculated. This is accomplished by expanding the charge density

and potential in cubic harmonics inside non-overlapping muffin-tin spheres and in a Fourier

series in the interstitial region. In all calculations we use two energy tails associated with

each basis orbital and for 6s, 6p, and the valence states (7s, 7p, 6d, and 5f) these pairs are

different. With this “double basis” approach we include six energy tail parameters and 12

basis functions per atom. Spherical harmonic expansions are carried out through lmax = 6

for the basis, potential, and charge density. The sampling of the irreducible Brillouin zone

is done using the special k-point method20 and 54 k points are utilized for this purpose.

Test calculations increasing this number to 128 result in no significant change of the elastic

constants (less than 3 %). To each energy eigenvalue a Gaussian is associated with 20

mRy width to speed up convergence. Spin-orbit coupling is implemented in a first-order

variational procedure21 for the valence d and f states, as was done previously,3 and for the

core states the fully relativistic Dirac equation is solved.

Total energies are converged to the µRy/atom level which typically requires about 100

self-consistent-field cycles.

III. ELASTIC CONSTANTS

Only in the last few years have calculations of elastic constants for more complex ge-

ometries been attempted from first principles, such as our own study on PtSi which is an

8 atom/cell orthorhombic system.22 More recently the elastic constants of coesite, a mon-

oclinic high-pressure polymorph of silica, were calculated23 and these compared favorably

with experimental data. Another low-symmetry system, α-U (a closer neighbor to Pu), has

been investigated within DFT and the obtained elastic properties agree well between various
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computations13,24,25 and measured data.

Here, we present the first calculated elastic constants for α-Pu, a material with a high

degree of complexity both as regards the crystal and electronic structures. The monoclinic

lattice has 13 independent moduli which can be determined from the total-energy response

to small distortions. A general elastic constant, cij , is obtained at a fixed unstrained atomic

volume (V0) through Eq. A1 given in the Appendix. The 13 applied strains, all summarized

in the Appendix, depend on a distortion parameter δ.

In Fig. 2 we show the total energies as functions of δ for the strains defined in Eqs.

A3-A5 which relate to c11, c22, and c33, respectively. These elastic constants are associated

with elongations along the x, y, and z directions. Because these strains are not conserving

the atomic volume (the determinants of the corresponding strain matrices are not unity) the

total energy is only lowest for the unstrained lattice if the calculation is performed at the

theoretical equilibrium volume. Here the total energies are computed at a volume of 20.3

Å3, which is somewhat larger than the calculated equilibrium volume (19.0 Å3), see Table I,

as discussed in the previous section. This then immediately explains why a negative δ, that

compresses the lattice, lowers the total energy in Fig. 2. Notice also in this figure that these

axial strains (Eqs. A3-A5) show parallel dependence on δ. The similarity of these curves

suggests that the volume dependence of b/a and c/a is small.

In Fig. 3 we show the total energies for the strains defined by Eqs. A6-A8. These strains

correspond to the elastic constants c44, c55, and c66, which are associated with the angle

between the respective axis. One of these lowers the total energy a minute amount for a

0.25 % strain, suggesting that the experimental structure is not the lowest-energy structure

in the calculations but very close. Overall, however, the total-energy dependencies on these

strains, combined with the remaining ones (Eqs. A9-A15, not shown), suggest that the

theoretical treatment reproduces the details of the monoclinic structure remarkably well.

In Table II we present the calculated elastic coefficient (C) associated with each strain,

defined in the Appendix. The first six strains (Eqs. A3-A8) immediately define the elastic

constants cii, whereas the other strains (Eqs. A9-A15) give linear combinations of cij. The

number of independent equations equals the number of unknown elastic moduli resulting

in a well defined system of linear equations that can be solved straightforwardly. Notice

in Table II that all distortions give rise to elastic coefficients that are relatively large and

positive (smallest is 43 GPa), implying mechanical stability with respect to all 13 strains.
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Next, by solving the linear equations for the cij, we collect the entries in Table III.

Some of the elastic constants, such as c12 for example, are negative but this should not be

interpreted as an instability because the actual applied distortions all give rise to positive

elastic coefficients, as mentioned above. It is also evident that c11 ≈ c22 while c33 is smaller.

This likely means that the c/a axial ratio is more sensitive to external influences, such as

pressure and temperature, than the b/a axial ratio.

The bulk modulus (B) is a special elastic constant that is related to a uniform change of

the atomic density or volume. On one hand, it can be directly obtained from calculations

of the total energy as a function of the atomic volume (equation-of-state). In practice, the

total energy is often fitted to an analytical expression which defines B. In our case we use

the Murnaghan form26 for this purpose, and the results are presented in Table I. On the

other hand, B can be evaluated from the elastic compliance constants sij (tabularized in

Table IV), which are components of the inverse to the elastic-constant matrix:23

B−1 = s11 + s22 + s33 + 2(s12 + s13 + s23). (1)

Computing B from the equation-of-state yields a value of 25 GPa (Table I), whereas

using Eq. 1 (after first numerically inverting the elastic-constant matrix) gives 21 GPa. The

fact that the bulk modulus obtained from these independent approaches agree reasonably

well indicates a consistency of the calculations but also reveals some numerical uncertainties

because they are not identical.

As mentioned in the introduction, there are no experimental single crystal elastic con-

stants to compare with our theoretical counterparts. Instead we attempt to relate our

results to polycrystal data. Recently Migliori et al.17 determined quantities they labeled as

“c11” and “c44” from their resonant ultrasound spectroscopy measurements of longitudinal

and shear sound speeds of arc-cast α-Pu. The latter refers to an isotropic shear modulus, G,

while the former we will call c̃11 to distinguish it from the single crystal c11. For an isotropic

material they are related to the bulk modulus through the equation

B = c̃11 −
4G

3
. (2)

Thus, we can collate the measured17,18 B, c̃11, and G with our calculated single crystal

elastic constants using Eq. 1, Eq. 2, and an estimated value for the shear modulus:
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GV =
1

15
[c11 + c22 + c33 + 3(c44 + c55 + c66) − (c12 + c13 + c23)]. (3)

This is the Voigt upper bound27 on the effective shear modulus for a macroscopically

isotropic polycrystal and it gives us B = 21, G = GV = 49.9, and c̃11 = 87.5 GPa, compared

to17,18 46.6-54.4, 43.5-43.7, and 104.6-112.8 GPa. Since we are using the Voigt upper bound

for the shear modulus, but the exact expression (Eq. 1) for the bulk modulus, it is interesting

to also use the Voigt upper bound for the bulk modulus to be consistent with the shear

modulus:

BV =
1

9
[c11 + c22 + c33 + 2(c12 + c13 + c23)]. (4)

This then gives us slightly different values which are summarized and compared with

experimental data in Table V.

Clearly in Table V, the theoretical bulk modulus agrees least favorably with that of ex-

perimental data, while both G and c̃11 are closer. In addition, GV is larger than the observed

value which is expected because it represents an upper bound. It should be mentioned that

DFT elastic constants are often within 10-20 % of measurements which is the case here for

both G and c̃11.

IV. DISCUSSION

The present α-Pu elastic constants are, we believe, the most accurate that could be

calculated within current computational constraints. We do, however, neglect the effect of

orbital polarization to make the calculations computationally feasible. To partly compensate

for this, we choose to evaluate the elastic constants at the equilibrium volume obtained from

the more complete electronic-structure treatment that includes OP. In addition, we do not

perform structural relaxations but assume the experimental crystal structure.

Next, we explore the uncertainties associated with these simplifications. A complete

structural relaxation is not possible with the techniques applied here but relaxations of

the axial ratios and the monoclinic angle are. We do this by optimizing each parameter

separately, guided by the total energy, starting from the observed structure.11 For α-Pu this

is easy because our calculations reproduce the experimental data very accurately (b/a =

1.77, c/a = 0.75, and θ = 102◦). The atomic positions were relaxed in a previous study
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using another technique12 and agreed well with the measured data.11 Consequently, for the

unstrained lattice, it is appropriate to assume insignificant issues with relaxation and to

use the experimental geometry close to the equilibrium volume (∼ 20 Å3). But, as already

mentioned, no relaxation is allowed during the very small (≤ 1%) elastic-constant distortions.

Now we investigate the influence of orbital polarization by collating calculations for the

c11 elastic constant. In Fig. 4 we show the total-energy variation as a function of strain

associated with c11 for models including both spin-orbit coupling and orbital polarization

(SO+OP) and spin-orbit coupling only (SO). The atomic volume for the unstrained lattice

is chosen to be that of the equilibrium for the (SO+OP) treatment (V0 =20.3 Å3). First we

observe that for the SO+OP approximation the total energy is minimized for the unstrained

crystal (δ = 0). This result suggests that axial ratios and the atomic volume are relaxed.

This is not the case for the model with spin-orbit interaction only (SO) for which negative

δ lowers the atomic volume closer to the calculated equilibrium (19.0 Å3) with a lowering

of the total energy as a result. Nevertheless, the computed c11 are nearly identical for the

two approaches with a difference of about 1.5 %. These results (132 and 134 GPa) are

somewhat larger than the tabulated value (120 GPa, see Table III) because the calculations

shown in Fig. 4 are only for comparison between the models and are modified as follows:

First, we employ 16 k points in the irreducible BZ (not 54) and secondly the Fourier series

expansion used to represent the electron potential and density in the interstitial is decreased

by about 15 %. These technical changes decrease the computational burden about one

order of magnitude which in turn allows us to introduce and test the influence of orbital

polarization.

Thus, from Fig. 4 it appears that our approach of neglecting OP but performing the

calculations at the equilibrium volume of the full treatment is a good compromise. When

evaluated at 19.0 Å3 (not shown) all elastic coefficients are larger by about 20 - 45 %.

As a consequence, c̃11 and G (Eq. 2) are both about 35 % larger at this smaller V0 and in

disagreement with the experimental data, see Table V. The increase in the elastic coefficients

is mostly due to greater attractive 5f bonding but also because the moduli scale inversely

with V0 (Eq. A1).

Because it is likely that orbital polarization has a minor influence on the α-Pu elastic

constants the question arises if spin-orbit interactions and spin polarization could likewise

be neglected as a reasonable approximation. In Fig. 5 we again show total-energy results
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associated with the c11 elastic constant, now for a model with spin-orbit interaction and

spin polarization (SO) and one without (No SO). First we notice that the unstrained lattice

(δ = 0) gives the minimum energy for both models. This is a consequence of properly

relaxed axial ratios and unstrained (V0) atomic volume. It is evident that these two models

predict significantly different c11. Both spin-orbit coupling and spin polarization reduces the

effective occupation of bonding 5f -electron states thus weakening the overall bond strength.

The result is a lower density, bulk modulus, and elastic constants. Ignoring these electron-

correlation effects leads to an overestimation of the aforementioned properties and the results

shown in Fig. 5 suggest it is rather severe for α-Pu. When evaluated at the SO+OP

equilibrium volume (20.3 Å3) there is an improvement, particularly for the simplest (No

SO) model (SO+OP: 134, SO: 132, and No SO: 139 GPa). Nonetheless, the (No SO)

treatment is worsening c11 and better calculations (SO) are feasible and preferred.

V. CONCLUSION

We have reported the first theoretical elastic constants for α-Pu. The electron-correlation

effects are modeled by an anti-ferromagnetic spin configuration3 including spin-orbit cou-

pling. The elastic-constant calculations in conjunction with unit-cell relaxations imply that

the experimentally observed monoclinic structure11 is stable and very close to what is pre-

dicted by the theory. Also, the b/a and c/a axial ratios are shown to be rather similar in

their dependence on external influences such as pressure or temperature, with the c/a likely

being more sensitive.

The strains applied to α-Pu (Eqs. A3-A15) result in elastic coefficients ranging from 43

to 302 GPa. This is in stark contrast to the elastic behavior of δ-Pu for which the tetragonal

shear constant is much smaller7 (c′ ∼ 5 GPa). One interpretation of this distinct elastic

behavior is that the 5f -electron bonding provides a mechanically less stable situation in

δ-Pu relative to α-Pu and that δ-Pu is closer to a structural phase transition (a lower phase

transformation barrier).

Test calculations of the c11 elastic constant suggest that orbital polarization may not be

necessary when spin-orbit interaction is included and the volume is chosen to be that of the

OP calculation which is also close to the experimental volume (∼ 20.3 Å3).

The computed elastic properties serve as predictions and can be used as bench mark
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for other theories or for development of inter-atomic potentials and semi-empirical models

for α-Pu. Although an indirect comparison, present single crystal elastic constants do not

appear to be inconsistent with reported data from polycrystal α-Pu, see Table V. The largest

relative difference with experiment is for the bulk modulus which is small when evaluated at

20.3 Å3 but better when obtained at the equilibrium volume (Table I). The bulk modulus

is very soft in α-Pu and small absolute differences between calculations can be large in

relative terms. Inclusion of orbital polarization certainly improves the calculations for the

bulk modulus while it may not necessarily influence the elastic constants significantly.

Another plausible reason for the discrepancy between calculations and measurements is

the uncertainty of comparing single crystal calculations with polycrystal data. The single

crystal elastic moduli must be averaged to enable a comparison and the inherent uncertainty

with this procedure is difficult to estimate. New experiments on single crystal α-Pu could

resolve this issue.

Lastly, our calculations do not address thermal lattice vibrations whereas the measure-

ments are performed at room temperature. The elastic constants show very pronounced

softening with temperature17 and it was proposed that this behavior is linked to 5f -electron

localization. Our own investigations28,29 (not shown) of α-Pu, employing Debye-Grüneisen

methodology and other quasi-harmonic treatments, suggest that the thermal softening of

the moduli can largely be accounted for by quasi-harmonic phonon contributions with no

temperature dependence of the electronic structure. If this is true, 5f -electron localization

is probably not the primary driver for the thermal softening of the moduli.
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Appendix A

In this Appendix, we present the strains of the monoclinic (α-Pu) structure applied to

calculate the 13 independent elastic constants of this phase. The internal energy of a crystal
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under strain, δ, can be Taylor expanded in powers of the strain tensor with respect to that

of the unstrained crystal in the following way:

E(V, δ) = E(V0, 0) + V0(
∑

i

τiξiδi +
1

2

∑

i,j

cijδiξiδjξj) + O(δ3). (A1)

The volume of the unstrained system is denoted V0 and E(V0, 0) is this system’s internal

energy, which corresponds to the total energy obtained from the electronic structure. The

Voigt notation has been used in the equation above, i.e., xx, yy, zz, yz, xz, and xy are

replaced with 1 through 6. Of course, yz, xz, and xy are equal to zy, zx, and yx and for

that reason ξi is equal to 1 for i = 1, 2, 3 and 2 for i = 4, 5, 6. τi above is a component of

the stress tensor. In practice this equation is here used for all 13 strains and the equation

can be written as

E(V, δ) = E(V0, 0) + V0(τδ +
1

2
Cδ2) (A2)

where we have introduced τ representing a linear combination of stress components and

C, a linear combination of elastic constants. C will be specified below as we introduce the

various strains, while we are not concerned here about the stress terms. Next, we present

the strains and their corresponding elastic coefficients C.





1 + δ 0 0

0 1 0

0 0 1




, C = c11. (A3)





1 0 0

0 1 + δ 0

0 0 1




, C = c22. (A4)





1 0 0

0 1 0

0 0 1 + δ




, C = c33. (A5)

1

(1 − δ2)





1 0 0

0 1 δ

0 δ 1




, C = 4c44. (A6)
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1

(1 − δ2)





1 0 δ

0 1 0

δ 0 1




, C = 4c55. (A7)

1

(1 − δ2)





1 δ 0

δ 1 0

0 0 1




, C = 4c66. (A8)

1

(1 − δ2)





1 + δ 0 0

0 1 − δ 0

0 0 1




, C = c11 + c22 − 2c12. (A9)

1

(1 − δ2)





1 + δ 0 0

0 1 0

0 0 1 − δ




, C = c11 + c33 − 2c13. (A10)

1

(1 − δ2)





1 0 0

0 1 + δ 0

0 0 1 − δ




, C = c22 + c33 − 2c23. (A11)

1

(1 − δ2)





1 + δ 0 δ

0 1 − δ 0

0 0 1




, C = c11 + c22 + c55 − 2(c12 − c15 + c25). (A12)

1

(1 − δ2)





1 + δ 0 δ

0 1 0

0 0 1 − δ




, C = c11 + c33 + c55 − 2(c13 − c15 + c35). (A13)





1 δ 0

0 1 δ

0 0 1




, C = c44 + c66 + 2c46. (A14)

1

(1 + δ)





1 + δ 0 δ

0 1 0

0 0 1




, C = c11 + c55 + 2c15. (A15)
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FIG. 1: (Color online) The experimental1 phase diagram of Pu.
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FIG. 2: (Color online) Total energy (µRy/atom) as a function of strain parameter (δ). The symbols

denoted Eq. A3, Eq. A4, and Eq. A5, correspond to the strains defined by Eqs. A3-A5 in the

Appendix.
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FIG. 3: (Color online) Total energy (µRy/atom) as a function of strain parameter (δ). The symbols

denoted Eq. A6, Eq. A7, and Eq. A8, correspond to the strains defined by Eqs. A6-A8 in the

Appendix.
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FIG. 4: (Color online) Total energy (µRy/atom) as a function of strain parameter (δ) corresponding

to the c11 elastic constant (Eq. A3). The unstrained atomic volume is 20.3 Å3. The blue solid-circle

symbols (left y-axis) denote results obtained from a model including both spin-orbit coupling and

orbital polarization (SO+OP). The red solid-square symbols (right y-axis) refer to a model with

spin-orbit coupling only (SO). The solid lines are the polynomial fits used to extract c11 (see main

text). The shown c11 is given in units of GPa.
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FIG. 5: (Color online) Total energy (µRy/atom) as a function of strain parameter (δ) corresponding

to the c11 elastic constant (Eq. A3). The blue solid-circle symbols denote results obtained from

a model including spin-orbit coupling (SO). The red solid-square symbols refer to a model with

neither spin polarization nor spin-orbit coupling (No SO). The solid lines are the polynomial fits

used to extract c11 (see main text). The calculations are performed for the respective equilibrium

volumes (Table I). The shown c11 is given in units of GPa.

Tables

TABLE I: Present calculations without orbital polarization and published with orbital polarization3

(SO+OP) together with those neglecting spin polarization and SO (No SO). Atomic volumes, V ,

in Å3 and bulk moduli, B, in GPa. Experimental data17,18 are for cast α-Pu. Bfix is the bulk

modulus evaluated at 20.3 Å3.
Method V B Bfix

Present theory 19.0 59 25

SO+OP 20.3 50 50

No SO 17.3 218 81

Experiment 20.2-20.4 46.6-54.4 −

TABLE II: Elastic coefficients (GPa) associated with the strains defined by Eqs. A3-A15 in the

Appendix.

A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

120.0 108.8 86.2 43.4 50.6 43.7 247.4 204.0 217.9 301.8 255.0 87.6 126.4

TABLE III: Elastic constants (GPa) obtained from the calculated elastic coefficients given in Table

II combined with Eqs. A3-A15 in the Appendix.

c11 c22 c33 c44 c55 c66 c12 c13 c23 c15 c25 c35 c46

120.0 108.8 86.2 43.4 50.6 43.7 -9.30 1.10 -11.5 2.21 2.02 2.19 -0.25
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TABLE IV: Elastic compliance constants (10−3 GPa−1) obtained from inverting the elastic-

constant matrix (Table III).

s11 s22 s33 s44 s55 s66 s12 s13 s23 s15 s25 s35 s46

9.52 10.9 14.0 23.0 28.3 22.9 2.03 1.58 3.10 -5.65 -6.58 -8.00 0.13

TABLE V: Presently calculated Voigt averages of B, G, and c̃11 together with experimental

data17,18 for cast α-Pu. The unit is GPa.
Method B G c̃11

Present theory 30.6 49.9 97.1

Experiment 46.6-54.4 43.5-43.7 104.6-112.8
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